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Performance Evaluation of Multiple Input-Queued ATM Switches With PIM
Scheduling Under Bursty Traffic

Ge Nong, Mounir Hamdi, and Jogesh K. Muppala

Abstract—In this letter, we analyze the performance of multiple
input-queued asynchronous transfer mode (ATM) switches that
use parallel iterative matching for scheduling the transmission
of head-of-line cells in the input queues. A queueing model of
the switch is developed under independently, identically dis-
tributed, two-state Markov modulated Bernoulli processesbursty
traffic. The underlying Markov chain of the queueing model is a
quasi-birth–death(QBD) chain. The QBD chain is solved using
an iterative computing method. Interesting performance metrics
of the ATM switch such as the throughput, the mean cell delay,
and the cell loss probability can be derived from the model.
Numerical results from both the analytical model and simulation
are presented, and the accuracy of the analysis is briefly discussed.

I. INTRODUCTION

I N THIS letter, we present an analytical model for a multiple
input-queued asynchronous transfer mode (ATM) switch

with virtual-output-queueing (VOQ), where each input of the
switch maintains separate queues, one for each of the
output ports. The switch operates synchronously and in each
time slot thehead-of-line(HOL) cells at the input queues can be
selected for transmission across the switch with the constraint
that, at most, one cell is able to be transmitted from/to any one
input/output link. Specifically, theparallel iterative matching
(PIM) algorithm used in DEC’sAN2switches [2] is employed
to schedule the queueing HOL cells to be forwarded to their
destined output ports. For notational simplicity, the VOQ
switch scheduled using the PIM algorithm is hereafter referred
to as the PIM switch.

We extend our model for a PIM switch presented in [5] and
[6], which considered the performance under independently,
identically distributed (i.i.d.) Bernoulli traffic to the case of
i.i.d. bursty traffic modeled by a two-stateMarkov-modulated
Bernoulli processes(MMBPs) [1]. The remainder of this letter
is organized as follows. In Section II, we develop and present
the solution for the queueing model of the switch. In Section III,
numerical results from the queueing model are presented and
compared with the results from simulation. Finally, Section IV
gives the conclusions.

II. QUEUEING MODEL AND ANALYSIS OF THEPIM SWITCH

A. Queueing Model

The queueing model is developed under the following
assumptions. 1) The switch operates synchronously. 2) Every
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input queue has the same buffer size, namely. 3) New cells
arrive only at the beginning of the time slots and cells depart
only at the end of the time slots. 4) Cells arrive at each input
according to an ON–OFF bursty process [1] modeled by a
two-state MMBP, where cells are generated only in the ON
(1) state and the destinations of cells are uniformly distributed
over all output ports. Only one cell can arrive at each input
in a time slot. Times spent in the ON (1) and OFF (0) states
are geometrically distributed with means of and

, respectively. For an switch, if an input’s
load is , then every queue at this input has an offered load
of . Given the mean burst length and the mean arrival
rate , and can be calculated as and

, respectively.
With the above assumptions, all the input queues’ stochastic

processes will be the same when the system attains the equilib-
rium steady state. The queue at input, with output as the des-
tination, is denoted . The occupancy of is taken
as thetaggedinput queue. The number of HOL cells at input
is denoted as theth HOL input queue, and the number of HOL
cells addressed for outputis denoted as theth HOL output
queue. Fig. 1 summarizes this information.

B. Underlying Markov Chain

The queueing model is analyzed by constructing an un-
derlying Markov chain in which the states are sampled at
the end of each time slot. Each state is expressed as a 4-tuple

, where , , , and refer to the length
of the taggedinput queue, the state of the traffic source at the
tagged input queue, the length of thevirtual HOL input queue,
and the length of thevirtual HOL output queue, respectively.
Within each time slot, a sequence of operations are considered
to occur in the following order: 1) generating new arrivals;
2) applying the PIM algorithm to select a set of cells from
the currently queued HOL cells; and 3) transferring the HOL
cells selected in the previous step to their output ports. Each
transition probability in the Markov chain accounts for all the
relevant events that occur in the aforementioned operations.
The state space of this four-dimensional Markov chain is given
by

where all elements are ordered in a lexicographical order,
i.e., , , , , ,

. The set of states { , , ,
, , } will be labeled as states in level

of the Markov chain. The Markov chainis a quasi-birth–death
(QBD) process with a transition
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Fig. 1. An example of the queueing model for the PIM switch.

probability matrix that is sparse and block-partitioned as shown
below

...
...

...
...

...

where and
, is a column

vector of ones of length . To account for the tran-
sition probabilities in , let
( , respectively) denote the joint
probability that the HOL cell of the queue is blocked
and there is (is not, respectively) a new cell arrival at the queue

at the beginning of the current time slot, and similarly
( , re-

spectively) denote the joint probability that the HOL cell of the

queue is transmitted and there is (is not, respectively)
a new cell arrival at the queue at the beginning of the
current time slot, given the following: 1) at the end of the last
time slot, the traffic source at inputis in state and the lengths
of the virtual HOL input and output queues areand , and
2) at the end of the current time slot, the lengths of the virtual
HOL input and output queues are and .

For the case that there is a new arrival cell at thetaggedinput
queueat the beginning of the current time slot, we define six
matrices , and ( or ) as the equation
shown at the bottom of the page.

In case there is no new cell arrival at thetaggedinput queue
at the beginning of the current time slot, we define another
six matrices , , and similar to , ,
and by replacing in
with ,

in with and

in with
, respectively. Using the above

...
...

...

...
...

...
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definitions, the element matrices in the transition probability
matrix can be computed as shown below

where is a column vector of ones of size ,
is a row/column vector of zeros of length , is an

matrix of zeros and ,
, ,

and .
We omit the detailed procedures of deriving the transition

probabilities in due to space limitations. Provided that the
transition probability matrix is known, it is a routine matter
to derive the steady-state equations for the Markov chain, and
solving the equations to obtain the steady-state probability
vector. The steady-state probability vector of the Markov chain

is given by , where
every element ,

, is a row vector of size , except which is a
scalar. The steady-state probabilities of the states in level
are denoted by , where and
are the probability vectors with the traffic source at input
in stage 0 and 1. Furthermore, we let and

.

C. Solving the Markov Chain

We now derive the equations for computing the blocking
probability and the success prob-
ability . The transition of the state
of the virtual HOL input/output queues from state to
state is a two-step process as illustrated in Fig. 2.

1) First, we account for the number of the newly ar-
riving HOL cells to the virtual HOL input/output queues.

2) Then, we consider the transition from the intermediate
state to the final state after applying the
PIM algorithm.

To utilize the concept of ataggedqueue, the condition of in-
dependent and identical components must be satisfied. Studies
indicate that such an assumption is reasonable for the moderate-
or large-sized input-queued switches underi.i.d traffic [5], [6].
Here, we make the same assumption, that is, when a cell arrives

Fig. 2. Transition of the virtual HOL queues.

at an empty queue , it will automatically observe another
th queue being empty with Bernoulli probability and an-

other queue in input being empty with Bernoulli probability
. The introduction of plays an essential role in the solution

of the Markov chain . However, the difficulty is that cannot
be directly derived from the known system parameters, such as
the switch size, buffer size, and traffic load. Instead of assuming

as a known parameter, we use an iterative method to obtain
from the known system parameters [4]. Equation (1) gives

the equation on which the iterative computation is carried out

(1)

Given , the formula for the probability of thevirtual HOL
queue’s transition from to can be derived with
some effort [5], [6]. Consequently, the steady-state probabilities
of are given by

(2)

(3)

for

(4)

where is given as

for
for
for
for .

(5)

The elements of matrices in (5) are functions of ,
, , and . This naturally suggests an iterative

solution [3], [5], [6]. Initially, both and are set to
be , which corresponds to the case that there is no
new arriving cell at thetaggedinput queueat the beginning
of a time slot, and both and are approximated
by . Then, the next
and are obtained by finding the root for (2) and (3).
Consequently, the new is computed by (4). As observed
from our experiments, the converging rate is quite high and
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Fig. 3. The throughput, mean cell delay and mean cell loss probability of an 8� 8 PIM switch with the buffer sizeb = 32, as a function of offered loads with
the mean burst length� = 8.

an accuracy of 10 for can be attained within 15 iterative
computations in most of cases.

D. Computing the Performance Metrics

The performance parameters of throughput, mean queue
length , mean cell delay , and mean cell loss probability

can be expressed in term of the steady-state probabilities
given as follows:

III. N UMERICAL RESULTS

Both mathematical analysis and simulation results are pre-
sented in this section in order to investigate the accuracy of the
above queueing model and to evaluate the performance of the
PIM switch under bursty traffic. Fig. 3(a)–(c) shows the switch
throughput, mean cell delay, and mean cell loss probability as
a function of the offered load with a mean burst length of eight
cells for an 8 8 PIM switch with various PIM scheduling it-
eration numbers 1, 2, and 3, respectively. In Fig. 3(c), the sim-
ulation results for the mean cell loss probability are given only
for the case when the switches are overloaded. This is because
the simulation results are meaningful only in these cases. Sim-
ulation cannot be used to estimate very low cell loss probability
values with good accuracy. It can be seen from these figures that
the mathematical analysis results closely approximate the sim-
ulation results. Noticeable deviations between the analysis and
simulation appear only in cases where the switch with multiple
iterations isoverloaded.

From Figs. 4 and 3(b), we can see that when the number of
PIM scheduling iterations is bigger than one, the mean delay
increases slowly with the traffic load as compared with just one
iteration. For a single iteration PIM scheduling, the mean cell
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Fig. 4. The mean cell delay of an 8� 8 PIM switch with the buffer sizeb =

32, as a function of offered loads with the mean burst length of� = 16.

delay increases dramatically when the offered load exceeds
60%, which indicates that PIM switches with single iteration
PIM scheduling will be overloaded when the traffic load is
greater than 60%. However, for two and three iterations PIM,
this overloaded traffic point is about 0.8. This trend can also be
observed in Fig. 3(a) and (c). As a result, it is advised to iterate
the PIM scheduling algorithm more than once to get a good
performance using these switches under bursty traffic.

IV. CONCLUSION

The presented analysis provides a unifying framework to
build queueing models for PIM switches underi.i.d traffic. In
addition, the queueing model can be extended using the same
technique to the situation where complicated bursty traffic with
more states are inserted to the switch. Recalling our previous
work in [5] and [6], we conclude that our suggested queueing
model works well not only in the case of thei.i.d Bernoulli
traffic, but also in the case of thei.i.d burst traffic where the
cells’ arrival process is correlated in a long term.
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